

 [image: _images/deux_banner_text.png]
Multifactor Authentication for Django Rest Framework

Contents

	Copyright

	Introduction
	About

	What is Multifactor Authentication?

	Quick Start

	Installation

	Bug tracker

	Contributing

	License

	User Guide
	DRF Integration

	Usage

	Extending

	API Reference

	Contributing

	Changelog

Indices and tables

	Module Index

	Search Page

Copyright

Deux User Manual

by Robinhood Markets, Inc. and individual contributors.

Copyright © 2015-2016, Robinhood Markets, Inc. and individual
contributors.

All rights reserved. This material may be copied or distributed only
subject to the terms and conditions set forth in the Creative Commons
Attribution-ShareAlike 4.0 International [http://creativecommons.org/licenses/by-sa/4.0/legalcode] license.

You may share and adapt the material, even for commercial purposes, but
you must give the original author credit.
If you alter, transform, or build upon this
work, you may distribute the resulting work only under the same license or
a license compatible to this one.

Note

While the Deux documentation is offered under the
Creative Commons Attribution-ShareAlike 4.0 International license
the Deux software is offered under the
BSD License (3 Clause) [http://www.opensource.org/licenses/BSD-3-Clause]

 [image: _images/deux_banner_text.png]
Multifactor Authentication for Django Rest Framework

Introduction

	Version:	1.2.0

	Web:	https://deux.readthedocs.org/

	Download:	https://pypi.python.org/pypi/deux

	Source:	https://github.com/robinhood/deux

	Keywords:	authentication, two-factor, multifactor

About

Multifactor Authentication provides multifactor authentication integration for
the Django Rest Framework. It integrates with Token Authentication built into
DRF and OAuth2 provided by django-oauth-toolkit [https://django-oauth-toolkit.readthedocs.io/].

What is Multifactor Authentication?

Multifactor Authentication (MFA) is a security system that requires more than
one method of authentication from independent categories of credentials to
verify the user’s identity for a login or other transaction.
(Source: SearchSecurity [http://searchsecurity.techtarget.com/definition/multifactor-authentication-MFA])

Quick Start

Go immediately to the DRF Integration guide to get started using
deux in your Django Rest Framework projects.

Installation

You can install deux either via the Python Package Index (PyPI)
or from source.

Requirements

deux version 1.2.0 runs on Python (2.7, 3.4, 3.5).

Installing with pip

To install using pip:

$ pip install -U deux

Downloading and installing from source

Download the latest version of deux from
http://pypi.python.org/pypi/deux

You can install it by doing the following:

$ tar xvfz deux-0.0.0.tar.gz
$ cd deux-0.0.0
$ python setup.py build
python setup.py install

The last command must be executed as a privileged user if
you are not currently using a virtualenv.

Using the development version

With pip

You can install it by doing the following:

$ pip install https://github.com/robinhood/deux/zipball/master#egg=deux

Bug tracker

If you have any suggestions, bug reports or annoyances please report them
to our issue tracker at https://github.com/robinhood/deux/issues/

Contributing

Development of Deux happens at GitHub: https://github.com/robinhood/deux

You are highly encouraged to participate in the development
of deux. If you don’t like GitHub (for some reason) you’re welcome
to send regular patches.

Be sure to also read the Contributing to Deux [http://deux.readthedocs.io/en/latest/contributing.html] section in the
documentation.

License

This software is licensed under the New BSD License. See the LICENSE
file in the top distribution directory for the full license text.

User Guide

	Release:	1.2

Guide for installing, configuring, and extending deux inside your
application.

	DRF Integration

	Usage

	Extending

DRF Integration

Setup

To set up deux for your Django Rest Framework application, follow these steps. For help setting up a DRF project, see guide [http://www.django-rest-framework.org/] here.

	Install deux.

$ pip install deux

	Add deux to INSTALLED_APPS [https://docs.djangoproject.com/en/1.9/ref/settings/#std:setting-INSTALLED_APPS] after rest_framework.authtoken
and oauth2_provider, depending on which authentication protocol you use.

INSTALLED_APPS = (
 # ...,
 'rest_framework.authtoken',
 'oauth2_provider',
 # ...,
 'deux',
)

	Migrate your database to add the MultiFactorAuth model.

$ python manage.py migrate

	Configure your settings.py file, as described in Settings.

Views

The library comes with a standard set of views you can add to your
Django Rest Framework API, that allows your users to enable/disable
multifactor authentication.

To enable them, add the following configuration to your file urls.py:

url(r"^mfa/", include("deux.urls", namespace="mfa")),

The library also provides views for authenticating through multifactor
authentication depending on your authentication protocol.

	For authtoken, add the following to urls.py:

url(r"^mfa/authtoken/", include(
 "deux.authtoken.urls", namespace="mfa-authtoken:login")),

	For oauth2, add the following to urls.py:

url(r"^mfa/oauth2/", include(
 "deux.oauth2.urls", namespace="mfa-oauth2:login")),

Settings

The library takes the following settings object. The default values are as
followed:

DEUX = {
 "BACKUP_CODE_DIGITS": 12,
 "MFA_CODE_NUM_DIGITS": 6,
 "STEP_SIZE": 30,
 "MFA_MODEL": "deux.models.MultiFactorAuth",
 "SEND_MFA_TEXT_FUNC": "deux.notifications.send_mfa_code_text_message",
 "TWILIO_ACCOUNT_SID": "",
 "TWILIO_AUTH_TOKEN": "",
 "TWILIO_PHONE_NUMBER": "",
}

MFA Optional Settings

	BACKUP_CODE_DIGITS: The length of multifactor backup code.

	Default: 12

	MFA_CODE_NUM_DIGITS: The length of a multifactor authentication code.

	Default: 6

	STEP_SIZE: The length of an authentication window in seconds.

	Usage: An authentication code is valid for 3 windows: the window in which the code is generated, the window before, and the window after.

	Default: 6

	MFA_MODEL: The model used for multifactor authentication

	Default: models.MultiFactorAuth

	Descrtiption: The default model is a blank extension of
abstract_models.AbstractMultiFactorAuth

Twilio Driver Settings

	SEND_MFA_TEXT_FUNC: The function used for sending text messages to users.

	Default: deux.notifications.send_mfa_code_text_message

If you use our default Twilio driver, you must also include your Twilio
credentials in the settings object.

	TWILIO_ACCOUNT_SID: Your Twilio account’s SID.

	TWILIO_AUTH_TOKEN: Your Twilio account’s authentication token.

	TWILIO_PHONE_NUMBER: Your Twilio account’s phone number.

Usage

Introduction

This library provides support for enabling Multifactor Authentication and then
authenticating through MFA.

Currently, the library only supports multifactor authentication over SMS, but
it can be easily extended to support new challenge types. The high level
API is as followed.

View detailed URL documentation here.

Getting MFA Status

Users can submit a request to GET mfa/ to get information about whether MFA
is enabled and which phone number it is enabled through.

Authentication

Deux supports authentication through both authtoken and oauth2. For both of these protocols, users must submit their username, password, and an MFA code or backup code. If the request is submitted without the token, they will be prompted for a token.

	For authtoken, place the request to PUT /mfa/authtoken/login.

	For oauth2, place the request to PUT /mfa/oauth2/token with a
password grant type.

If MFA is not enabled, these endpoints will behave like the base authentication protocols.

Enabling MFA

The enabling process involves submitting a request to an MFA method and receiving back a code. The user must then submit the code to verify the request. If the code is correct, the MFA will then be enabled.

[image: ../_images/state_diagram.png]
MFA can be enabled through the following methods:

SMS

To enable MFA through SMS, the user must first submit a request to
PUT mfa/sms/request/ with a phone number, which will send an SMS to the
phone number with the MFA code.

The user should then submit a PUT mfa/sms/verify/ request with the MFA code
to enable MFA.

Disabling MFA

Users can submit a DELETE mfa/ request to disable MFA.

Backup Code

Users only have one backup code which can be used to authenticate. If you use
a backup code to authenticate, MFA will be disabled. To get the backup code,
the user can submit a request to GET mfa/recovery.

The backup code will be reset every request.

Extending

Notifications

The send SMS function can be directly overridden by a custom function. You can
configure the function in your SEND_MFA_TEXT_FUNC setting.

Your SMS function should throw deux.exceptions.FailedChallengeError for any errors to be caught by this library’s functions.

Your function can look something like this:

def custom_send_function(mfa_instance, mfa_code):
 ...

To use the function, in your settings.py:

DEUX = {
 ...
 "SEND_MFA_TEXT_FUNC": "<module_path>.custom_send_function",
}

Models

You can write your own custom model that extends deux.abstract_models.AbstractMultiFactorAuth and configure the model in your MFA_MODEL setting.

Your model can look something like this:

class CustomMultiFactorAuth(AbstractMultiFactorAuth):
 ...

To use the function, in your settings.py:

DEUX = {
 ...
 "MFA_MODEL": "<module_path>.CustomMultiFactorAuth",
}

Authentication Protocols

Currently, the package supports authtoken and oauth2. You can easily
extend the package to support your authentication protocol of choice.

Create a new sub-directory under the main application for your authentication and
create a new login endpoint that follows the same two factor login protocol as
the rest of the package.

Register your new endpoint in the test_proj/urls.py file like this:

url(r"^mfa/<protocol>/",
 include("deux.<protocol>.urls", namespace="<protocol>"),
),

Look at deux.authtoken or deux.oauth2 for examples.

Challenge Methods

Currently, the package supports two factor over text message. However, it is easy to add your own challenge method for two factor (i.e. Google Authenticator or email).

Create a new challenge type in deux.constants.

YOUR_CHALLENGE_METHOD = "<Your challenge method.>"

CHALLENGE_TYPES = (SMS, YOUR_CHALLENGE_METHOD)

Then, add a new challenge method to the deux.services.MultiFactorChallenge class.

class MultiFactorChallenge(object):
 ...

 def generate_challenge(self):
 """
 Generates and executes the challenge object based on the challenge
 type of this object.
 """
 dispatch = {
 SMS: self._sms_challenge,
 YOUR_CHALLENGE_METHOD: self._your_challenge_method,
 }

 ...

 def _your_challenge_method(self):
 """Executes your challenge method."""
 ...

Then, add the necessary endpoints around requesting and verifying Two Factor with this challenge method.

url(r"^your_challenge_method/request/$",
 views.YourChallengeMethodRequestDetail.as_view(),
 name="your_challenge_method_request-detail"
),
url(r"^your_challenge_method/verify/$",
 views.YourChallengeMethodVerifyDetail.as_view(),
 name="your_challenge_method_verify-detail"
),
url(r"^sms/verify/$", views.SMSChallengeVerifyDetail.as_view(),
 name="sms_verify-detail"),

API Reference

	Release:	1.2

	Date:	Mar 16, 2017

	deux

	deux.abstract_models

	deux.authtoken

	deux.authtoken.serializers

	deux.authtoken.views

	deux.constants

	deux.exceptions

	deux.models

	deux.notifications

	deux.oauth2

	deux.oauth2.backends

	deux.oauth2.exceptions

	deux.oauth2.validators

	deux.oauth2.views

	deux.serializers

	deux.services

	deux.strings

	deux.validators

	deux.views

deux

Multifactor Authentication for Django Rest Framework

GET /mfa/

Sample Response

200 OK
{
 "enabled": True or False,
 "challenge_type": "sms"
 "phone_number": "14085862744"
}

DELETE /mfa/

Expected Response

204 NO CONTENT

PUT /mfa/sms/request/

Expected Request

{
 "phone_number": "14085862744"
}

Expected Response

200 OK
{
 "enabled": False,
 "challenge_type": ""
 "phone_number": "14085862744"
}

PUT /mfa/sms/verify/

Expected Request

{
 "mfa_code": "123456"
}

Expected Response

200 OK
{
 "enabled": True,
 "challenge_type": "sms"
 "phone_number": "14085862744"
}

GET /mfa/recovery/

Expected Response

200 OK
{
 "backup_code: "123456789012"
}

deux.abstract_models

	
class deux.abstract_models.AbstractMultiFactorAuth

	This abstract class holds user information, MFA status, and secret
keys for the user.

	
CHALLENGE_CHOICES = ((u'sms', u'SMS'), (u'', u'Off'))

	Different status options for this MFA object.

	
backup_code

	Returns the users backup code.

	
backup_key

	Secret key used for backup code.

	
challenge_type

	Challenge type used for MFA.

	
check_and_use_backup_code(code)

	Checks if the inputted backup code is correct and disables MFA if
the code is correct.

This method should be used for authenticating with a backup code. Using
a backup code to authenticate disables MFA as a side effect.

	
disable()

	Disables MFA for this user.

The disabling process includes setting the objects challenge type to
DISABLED, and removing the backup_key and phone_number.

	
enable(challenge_type)

	Enables MFA for this user with the inputted challenge type.

The enabling process includes setting this objects challenge type and
generating a new backup key.

	Parameters:	challenge_type – Enable MFA for this type of challenge. The type
must be in the supported CHALLENGE_TYPES.

	Raises:	AssertionError [https://docs.python.org/dev/library/exceptions.html#AssertionError] – If challenge_type is not a supported
challenge type.

	
enabled

	Returns if MFA is enabled.

	
get_bin_key(challenge_type)

	Returns the key associated with the inputted challenge type.

	Parameters:	challenge_type – The challenge type the key is requested for.
The type must be in the supported
CHALLENGE_TYPES.

	Raises:	AssertionError [https://docs.python.org/dev/library/exceptions.html#AssertionError] – If challenge_type is not a supported
challenge type.

	
phone_number

	User’s phone number.

	
refresh_backup_code()

	Refreshes the users backup key and returns a new backup code.

This method should be used to request new backup codes for the user.

	
sms_bin_key

	Returns binary data of the SMS secret key.

	
sms_secret_key

	Secret key used for SMS codes.

	
user

	User this MFA object represents.

deux.authtoken

POST /mfa/authtoken/login/

Expected Request

{
 "username": "testuser",
 "password": "mypassword",
 "mfa_code": "123456", (Optional)
 "backup_code": "123456789012" (Optional)
}

Expected Response if Authenticated

200 OK
{
 "token": "<token>",
}

Expected Response if MFA Required

200 OK
{
 "mfa_required": True,
 "mfa_type": "sms"
}

deux.authtoken.serializers

	
class deux.authtoken.serializers.MFAAuthTokenSerializer

	This extends the AuthTokenSerializer to support multifactor
authentication.

	
backup_code = None

	Serializer field for Backup code.

	
mfa_code = None

	Serializer field for MFA code field.

	
validate(attrs)

	Extends the AuthTokenSerializer validate method to implement multi
factor authentication.

If MFA is disabled, authentication requires just a username and
password.

If MFA is enabled, authentication requires a username, password,
and either a MFA code or a backup code. If the request only provides
the username and password, the server will generate an appropriate
challenge and respond with mfa_required = True.

Upon using a backup code to authenticate, MFA will be disabled.

	Parameters:	attrs – Dictionary of data inputted by the user.

	Raises:	serializers.ValidationError – If invalid MFA code or backup code
are submitted. Also if both types of code are submitted
simultaneously.

deux.authtoken.views

	
class deux.authtoken.views.ObtainMFAAuthToken

	View for authenticating which extends the ObtainAuthToken from
Django Rest Framework’s Token Authentication.

	
post(self, request)

	Override ObtainAuthToken’s post method for multifactor
authentication.

(1) When MFA is required, send the user a response
indicating which challenge is required.
(2) When authentication is successful return the auth token.

	Parameters:	request – Request object from the client.

	
serializer_class

	alias of MFAAuthTokenSerializer

deux.constants

	
deux.constants.CHALLENGE_TYPES = (u'sms',)

	A tuple of all support challenge types.

	
deux.constants.DISABLED = u''

	Represents the DISABLED state of MFA.

	
deux.constants.SMS = u'sms'

	Represents the state of using SMS for MFA.

deux.exceptions

	
exception deux.exceptions.FailedChallengeError

	Generic exception for a failed challenge execution.

	
exception deux.exceptions.InvalidPhoneNumberError(message=<django.utils.functional.__proxy__ object>)

	Exception for SMS that fails because phone number is not a valid
number for receiving SMS’s.

	
exception deux.exceptions.TwilioMessageError(message=<django.utils.functional.__proxy__ object>)

	Exception that Twilio failed to send the text message for reasons
other than NotSMSNumberError.

deux.models

	
class deux.models.MultiFactorAuth

	Blank extension of AbstractMultiFactorAuth that is used as the
default model in this package.

deux.notifications

	
deux.notifications.NOT_SMS_DEVICE_CODE = 21401

	Error code from Twilio to indicate at InvalidPhoneNumberError

	
deux.notifications.send_mfa_code_text_message(mfa_instance, mfa_code)

	Sends the MFA Code text message to the user.

	Parameters:	
	mfa_instance – MultiFactorAuth instance to use.

	mfa_code – MFA code in the form of a string.

	Raises:	
	deux.exceptions.InvalidPhoneNumberError – To tell system that this
MFA object’s phone number if not a valid number to receive SMS’s.

	deux.exceptions.TwilioMessageError – To tell system that Twilio
failed to send message.

deux.oauth2

POST /mfa/oauth2/token/

Expected Request

{
 "grant_type": "password"
 "username": "testuser",
 "password": "mypassword",
 "mfa_code": "123456", (Optional)
 "backup_code": "123456789012" (Optional)
}

Expected Response if Authenticated

200 OK
{
 "access_token": "<token>",
 "expires_in": "<seconds>",
 "token_type": "Bearer",
 "scope": "<scope>",
 "refresh_token": "<token>"
}

Expected Response if MFA Required

200 OK
{
 "mfa_required": True,
 "mfa_type": "sms"
}

deux.oauth2.backends

	
class deux.oauth2.backends.MFARequestBackend

	OAuth2 backend class for MFA extending JSONOAuthLibCore. It extracts
extra credentials (mfa_code and backup_code) from the request body.

	
_get_extra_credentials(body)

	Gets dictionary of mfa_code and backup_code from the body.

	Parameters:	body – The request body in url encoded form.

	Returns:	Dictionary with mfa_code and backup_code.

	
create_token_response(request)

	Overrides the base method to pass in the request body instead of the
request because Django only allows the request data stream to be read
once.

	Parameters:	request – The request to create a token response from.

	Returns:	The redirect uri, headers, body, and status of the response.

	
extract_body(request)

	Extract request body by coercing the request to a Django Rest
Framework Request.

	Params request:	The request to extract the body from.

	Returns:	Returns the items in the requests body.

deux.oauth2.exceptions

	
exception deux.oauth2.exceptions.ChallengeRequiredMessage(challenge_type)

	This exception is used to prompt the user for an MFA code.

This exception is used when a user passes in their username and password,
and they have MFA enabled.

	
status_code = 200

	This exception returns a 200 response.

	
twotuples

	Returns a list of tuples that will be converted to the error response.
This method override the two_tuples method from OAuth2Error.

	
exception deux.oauth2.exceptions.InvalidLoginError(message)

	Generic exception for a failed login attempt through OAuth2. This exception
will result in a 400 Bad Request error in the OAuth API.

	
twotuples

	Returns a list of tuples that will be converted to the error response.
This method override the two_tuples method from OAuth2Error.

deux.oauth2.validators

	
class deux.oauth2.validators.MFAOAuth2Validator

	OAuth2 validator class for MFA that validates requests to authenticate
with username and password by also verifying that they supply the correct
MFA code or backup code if multifactor authentication is enabled.

	
validate_user(username, password, client, request, *args, **kwargs)

	Overrides the OAuth2Validator validate method to implement multi factor
authentication.

If MFA is disabled, authentication requires just a username and
password.

If MFA is enabled, authentication requires a username, password,
and either a MFA code or a backup code. If the request only provides
the username and password, the server will generate an appropriate
challenge and respond with mfa_required = True.

Upon using a backup code to authenticate, MFA will be disabled.

	Parameters:	attrs – Dictionary of data inputted by the user.

	Raises:	
	deux.oauth2.exceptions.InvalidLoginError – If invalid MFA
code or backup code are submitted. Also if both types of code are
submitted simultaneously.

	deux.oauth2.exceptions.ChallengeRequiredMessage – If the user
has MFA enabled but only supplies the correct username and
password. This exception will prompt the OAuth2 system to send a
response asking the user to supply an MFA code.

deux.oauth2.views

	
class deux.oauth2.views.MFATokenView

	Extends OAuth’s base TokenView to support MFA.

	
oauthlib_backend_class

	Use Deux’s custom backend for the MFA OAuth api.

alias of MFARequestBackend

	
validator_class

	Use Deux’s custom validator for the MFA OAuth api.

alias of MFAOAuth2Validator

deux.serializers

	
class deux.serializers.BackupCodeSerializer

	Serializer for the user requesting backup codes.

	
backup_code = None

	Serializer field for the backup code.

	
get_backup_code(instance)

	Method for retrieving the backup code. On every request, the backup
code is refreshed.

	Parameters:	instance – MultiFactorAuth instance to use.

	Raises:	serializers.ValidationError – If MFA is disabled.

	
class deux.serializers.MultiFactorAuthSerializer

	Basic MultiFactorAuthSerializer that encodes MFA objects into a standard
response.

The standard response returns whether MFA is enabled, the challenge
type, and the user’s phone number.

	
to_representation(mfa_instance)

	Encodes an MFA instance as the standard response.

	Parameters:	mfa_instance – MultiFactorAuth instance to use.

	Returns:	Dictionary with enabled, challengetype, and
phone_number from the MFA instance.

	
class deux.serializers.SMSChallengeRequestSerializer

	Serializer that facilitates a request to enable MFA over SMS.

	
challenge_type = u'sms'

	This serializer represents the SMS challenge type.

	
update(mfa_instance, validated_data)

	If the request data is valid, the serializer executes the challenge
by calling the super method and also saves the phone number the user
requested the SMS to.

	Parameters:	
	mfa_instance – MultiFactorAuth instance to use.

	validated_data – Data returned by validate.

	
class deux.serializers.SMSChallengeVerifySerializer

	Extension of _BaseChallengeVerifySerializer that implements
challenge verification for the SMS challenge.

	
challenge_type = u'sms'

	This serializer represents the SMS challenge type.

	
class deux.serializers._BaseChallengeRequestSerializer

	Base Serializer class for all challenge request.

	
challenge_type

	Represents the challenge type this serializer represents.

	Raises:	NotImplemented – If the extending class does not define
challenge_type.

	
execute_challenge(instance)

	Execute challenge for this instance based on the challenge_type.

	Parameters:	instance – MultiFactorAuth instance to use.

	Raises:	serializers.ValidationError – If the challenge fails to execute.

	
update(mfa_instance, validated_data)

	If the request is valid, the serializer calls update which executes
the challenge_type.

	Parameters:	
	mfa_instance – MultiFactorAuth instance to use.

	validated_data – Data returned by validate.

	
validate(internal_data)

	Validate the request to enable MFA through this challenge.

Extending classes should extend for additional functionality. The
base functionality ensures that MFA is not already enabled.

	Parameters:	internal_data – Dictionary of the request data.

	Raises:	serializers.ValidationError – If MFA is already enabled.

	
class deux.serializers._BaseChallengeVerifySerializer

	This serializer first extracts MFA code from request body
(to_internal_value). It then verifies the code against the
corresponding MultiFactorAuth instance (validate). If the code
is valid, it enables MFA based on the challenge type (update).

	
challenge_type

	Represents the challenge type this serializer represents.

	Raises:	NotImplemented – If the extending class does not define
challenge_type.

	
mfa_code = None

	Requests to verify an MFA code must include an mfa_code.

	
update(mfa_instance, validated_data)

	If the request is valid, the serializer enables MFA on this instance
for this serializer’s challenge_type.

	Parameters:	
	mfa_instance – MultiFactorAuth instance to use.

	validated_data – Data returned by validate.

	
validate(internal_data)

	Validates the request to verify the MFA code. It first ensures that
MFA is not already enabled and then verifies that the MFA code is the
correct code.

	Parameters:	internal_data – Dictionary of the request data.

	Raises:	serializers.ValidationError – If MFA is already enabled or if
the inputted MFA code is not valid.

deux.services

	
class deux.services.MultiFactorChallenge(instance, challenge_type)

	A class that represents a supported challenge and has the ability to
execute the challenge.

	Parameters:	
	instance – MultiFactorAuth instance to use.

	challenge_type – Challenge type being used for this object.

	Raises:	AssertionError [https://docs.python.org/dev/library/exceptions.html#AssertionError] – If challenge_type is not a supported
challenge type.

	
generate_challenge()

	Generates and executes the challenge object based on the challenge
type of this object.

	
deux.services.generate_key()

	Generates a key used for secret keys.

	
deux.services.generate_mfa_code(bin_key, drift=0)

	Generates an MFA code based on the bin_key for the current timestamp
offset by the drift.

	Parameters:	
	bin_key – The secret key to be converted into an MFA code

	drift – Number of time steps to shift the conversion.

	
deux.services.verify_mfa_code(bin_key, mfa_code)

	Verifies that the inputted mfa_code is a valid code for the given
secret key. We check the mfa_code against the current time stamp as
well as one time step before and after.

	Parameters:	
	bin_key – The secret key to verify the MFA code again.

	mfa_code – The code whose validity this function tests.

deux.strings

	
deux.strings.BOTH_CODES_ERROR = <django.utils.functional.__proxy__ object>

	Error if user submits both MFA and backup code for authentication.

	
deux.strings.DISABLED_ERROR = <django.utils.functional.__proxy__ object>

	Error if MFA is unexpectedly in a disabled state.

	
deux.strings.ENABLED_ERROR = <django.utils.functional.__proxy__ object>

	Error if MFA is unexpectedly in an enabled state.

	
deux.strings.INVALID_BACKUP_CODE_ERROR = <django.utils.functional.__proxy__ object>

	Error if an invalid backup code is entered.

	
deux.strings.INVALID_CREDENTIALS_ERROR = <django.utils.functional.__proxy__ object>

	Error if a user provides an invalid username/password combination.

	
deux.strings.INVALID_MFA_CODE_ERROR = <django.utils.functional.__proxy__ object>

	Error if an invalid MFA code is entered.

	
deux.strings.INVALID_PHONE_NUMBER_ERROR = <django.utils.functional.__proxy__ object>

	Error if an invalid phone number is entered.

	
deux.strings.MFA_CODE_TEXT_MESSAGE = <django.utils.functional.__proxy__ object>

	Message body for a MFA code.

	
deux.strings.PHONE_NUMBER_NOT_SET_ERROR = <django.utils.functional.__proxy__ object>

	Error if phone number is not set for a challenge that requires it.

	
deux.strings.SMS_SEND_ERROR = <django.utils.functional.__proxy__ object>

	Error if SMS fails to send.

deux.validators

	
deux.validators.phone_number_validator = <django.core.validators.RegexValidator object>

	Regex validator for phone numbers.

deux.views

	
class deux.views.BackupCodeDetail

	View for retrieving the user’s backup code.

	
serializer_class

	alias of BackupCodeSerializer

	
class deux.views.MultiFactorAuthDetail

	View for requesting data about MultiFactorAuth and disabling MFA.

	
perform_destroy(instance)

	The delete method should disable MFA for this user.

	Raises:	rest_framework.exceptions.ValidationError – If MFA is not
enabled.

	
serializer_class

	alias of MultiFactorAuthSerializer

	
class deux.views.MultiFactorAuthMixin

	Mixin that defines queries for MFA objects.

	
get_object()

	Gets the current user’s MFA instance

	
class deux.views.SMSChallengeRequestDetail

	View for requesting SMS challenges to enable MFA through SMS.

	
serializer_class

	alias of SMSChallengeRequestSerializer

	
class deux.views.SMSChallengeVerifyDetail

	View for verify SMS challenges to enable MFA through SMS.

	
serializer_class

	alias of SMSChallengeVerifySerializer

	
class deux.views._BaseChallengeView

	Base view for different challenges.

	
challenge_type

	Represents the challenge type this serializer represents.

	Raises:	NotImplemented – If the extending class does not define
challenge_type.

Contributing

Welcome!

This document is fairly extensive and you are not really expected
to study this in detail for small contributions;

The most important rule is that contributing must be easy
and that the community is friendly and not nitpicking on details
such as coding style.

If you’re reporting a bug you should read the Reporting bugs section
below to ensure that your bug report contains enough information
to successfully diagnose the issue, and if you’re contributing code
you should try to mimic the conventions you see surrounding the code
you are working on, but in the end all patches will be cleaned up by
the person merging the changes so don’t worry too much.

	Community Code of Conduct
	Be considerate.

	Be respectful.

	Be collaborative.

	When you disagree, consult others.

	When you are unsure, ask for help.

	Step down considerately.

	Reporting Bugs
	Security

	Other bugs

	Issue Tracker

	Versions

	Branches
	master branch

	Maintenance branches

	Archived branches

	Feature branches

	Tags

	Working on Features & Patches
	Forking and setting up the repository

	Running the unit test suite

	Creating pull requests
	Calculating test coverage

	Running the tests on all supported Python versions

	Building the documentation

	Verifying your contribution
	pyflakes & PEP8

	API reference

	Coding Style

	Contributing features requiring additional libraries

	Contacts
	Committers
	Abhishek Fatehpuria

	Jamshed Vesuna

	Packages
	Deux

	Release Procedure
	Updating the version number

	Releasing

Community Code of Conduct

The goal is to maintain a diverse community that is pleasant for everyone.
That is why we would greatly appreciate it if everyone contributing to and
interacting with the community also followed this Code of Conduct.

The Code of Conduct covers our behavior as members of the community,
in any forum, mailing list, wiki, website, Internet relay chat (IRC), public
meeting or private correspondence.

The Code of Conduct is heavily based on the Ubuntu Code of Conduct [http://www.ubuntu.com/community/conduct], and
the Pylons Code of Conduct [http://docs.pylonshq.com/community/conduct.html].

Be considerate.

Your work will be used by other people, and you in turn will depend on the
work of others. Any decision you take will affect users and colleagues, and
we expect you to take those consequences into account when making decisions.
Even if it’s not obvious at the time, our contributions to Deux will impact
the work of others. For example, changes to code, infrastructure, policy,
documentation and translations during a release may negatively impact
others work.

Be respectful.

The Deux community and its members treat one another with respect. Everyone
can make a valuable contribution to Deux. We may not always agree, but
disagreement is no excuse for poor behavior and poor manners. We might all
experience some frustration now and then, but we cannot allow that frustration
to turn into a personal attack. It’s important to remember that a community
where people feel uncomfortable or threatened is not a productive one. We
expect members of the Deux community to be respectful when dealing with
other contributors as well as with people outside the Deux project and with
users of Deux.

Be collaborative.

Collaboration is central to Deux and to the larger free software community.
We should always be open to collaboration. Your work should be done
transparently and patches from Deux should be given back to the community
when they are made, not just when the distribution releases. If you wish
to work on new code for existing upstream projects, at least keep those
projects informed of your ideas and progress. It many not be possible to
get consensus from upstream, or even from your colleagues about the correct
implementation for an idea, so don’t feel obliged to have that agreement
before you begin, but at least keep the outside world informed of your work,
and publish your work in a way that allows outsiders to test, discuss and
contribute to your efforts.

When you disagree, consult others.

Disagreements, both political and technical, happen all the time and
the Deux community is no exception. It is important that we resolve
disagreements and differing views constructively and with the help of the
community and community process. If you really want to go a different
way, then we encourage you to make a derivative distribution or alternate
set of packages that still build on the work we’ve done to utilize as common
of a core as possible.

When you are unsure, ask for help.

Nobody knows everything, and nobody is expected to be perfect. Asking
questions avoids many problems down the road, and so questions are
encouraged. Those who are asked questions should be responsive and helpful.
However, when asking a question, care must be taken to do so in an appropriate
forum.

Step down considerately.

Developers on every project come and go and Deux is no different. When you
leave or disengage from the project, in whole or in part, we ask that you do
so in a way that minimizes disruption to the project. This means you should
tell people you are leaving and take the proper steps to ensure that others
can pick up where you leave off.

Reporting Bugs

Security

You must never report security related issues, vulnerabilities or bugs
including sensitive information to the bug tracker, or elsewhere in public.
Instead sensitive bugs must be sent by email to security@robinhood.com.

If you’d like to submit the information encrypted our PGP key is:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: SKS 1.1.5

mQINBFfPKmcBEADYx/ZGUwc6/x3CtViIRXz1ZyOHxERAcE2Lenmkr6oop3bt36smIgFSsU7K
VMl32j+OlKaoLlVGRevxj6kKsFdNyqYGTUM2CTWx1gmd39QBPOqQeWDmTUa6ze332bJ1yJG1
dtd/m2PuUZLAYLvUOLJSMmZgSeB22DKvNjnCZnNIw7nuGW/OIZHNYYZztNAxjIVCpXYvzPUh
2yRBN+8ZxHaQUzrwXvU8h924mS06F0q2FRz++ClMKUh42UIXUFlIkXv5iIvTM6G4TVM5wt5p
G+gCnRzbPUmStoU/RYbLj8GkFMs52rb3gAFHy+Yx/K3awVTV985eo7PuJM+TzMqdD4zPeE7Z
V626fO+cVVCSmF+3ikO65RZJ8eWYeTWlQ3dQr+kLxQcK9ZUBFCjNqab4m9OchjamvtyvKt//
V4H6datfIN/4Ss5qcpegQ3SwOokz/vWPU4qZSKAp2cQY2WU4fSkKQK2Q9m5zKhyH6E/GH9nR
x4MsBIFgRAAts8FeP3d/Xf49qd8oLje8UkNChHrLUbzaSdRNZQu3KM7K/OVI13OzSRov+mP8
Twhk2xXFRy6iibR1n4YsSWmtHv7iiin3rWk9uJXO9P7V9P8xghudfja3SstxnK1ueASTbC2f
iJgN4H0mPXNn0BC1I2na2xczP/83sOv0nHCk9PjeuSYsjhk+8wARAQABtDVSb2Jpbmhvb2Qg
TWFya2V0cyAoU2VjdXJpdHkpIDxzZWN1cml0eUByb2Jpbmhvb2QuY29tPokCOAQTAQIAIgUC
V88qZwIbAwYLCQgHAwIGFQgCCQoLBBYCAwECHgECF4AACgkQFKwy0jX7jrxJFA//TKzjxO84
yodjwAO4IIO/nUeqvwWKiSr2dcPtAFQGUno5NjxM0iM170ff8qg5WoLQsic786PM71Q0I0aF
OGFiiNRxRdS/sm0e1XYyIqu/24hwyHybpmxM+LYAoZNpUi6hAy5a+iTrorCJnGpFOUlYPDpM
rMjOhRNeo5YOLW1WXQ0mAH93lwIHCm8XkkZWiFtrg/3zLyHLz0KV7nwpY4/fm0qjp2C/B/kw
lF/Ol3opHrX8WNDYnr9IillRurqjh0Hvm8U7aNlDx9nFwb4uMYcXano37EMyVOnnCBVYT9kM
BiGBxnucTPsgs/KZLCRqihSt2qkSK3EB344oFZ5bqum8jKn/cGCLYv2GzG217FNTdNTIlAMN
zkgPlUCK885YpJDNaqScuOXphgpJr+4a71ml6GhM2G+Grkfo+YVR/d8X3Z7MJSRXxWHf5P5U
PK1QS7pbQdTG5TrEd4NNI6a4ixBWk0OJIsBcer2dFDTBQXIMfcUZ+Nb1C1vxdrvBPVkUtCIf
XbXeW4cYjxO7/AoarvPANqFol6mhZeBSHw/AiADaXs8oCIYVHPoaa5sJALhZD65vUvYZxYom
QJE+8EuV5X5EhDSWoqvnC+ugVum9wSBjI2OF4PlEfifhfo+z5Xhpus6GdniEQ9jNBr4+Lvoc
rssIUSxQQ4fsNqAgrmTauIOOWaa5Ag0EV88qZwEQALUX5gUbAmK6CRxM/15+eRuKq0IAP6+5
sJsH0IrRr7mHUi8QxYzHouWK9klVdjRvd1crr9Q48wsty13togbiDTFPRCa/Z6K0vKdAneeS
RQL89FGpQBq7nMM9GytUoBQ6BWAxItxdRiRKQ4NeyzCTcJjq1zN3KRd1d+RwnFLr3HTWbevv
yOktdbklV6ld7IT8mMsuiZw3AA74tIWD0res6FtIqUVS2I2CEIODOlIXEjRDdcTES0bXxH/2
/T3wPIfMEb1aSyhBYsGHRB7pAAqGrpb7LguVTt2hpfRShtew5O9hwLquA+kaGU/MIjKIKrxH
PVkng8TwqhS3Et/hhAdLXtWj1ZXbRV5RPa1T90+JVX2PU4IapvHjZG4iZ4Oe7wtwtRSU1mQK
Q30BpArsv7+1ezZMALsenYxbAh1ckp8bDEiNTboDzn7rBGXY2sUvLrl05oUbA7ntX0w6PIP4
SHtWshCtu5+4g2/QX4zv4OEfFY6CeLHuuaw2zSUCXEAkVJCdjAXjmLpH5LftHDGn91kqmfgl
VSQWeIfTCEue7Ehvfke1k5ASKi/L3+HPinRtT8JhCFGFM2gViNXtFMk5Dqb7TFo3g6s/Kd0/
gCpnE0844ts5Wh6S1DtbZ2YawS8lxEh0yQ1VJ4FraVEiMQ3SHFtKsAsGuR1Sz2/QL+tcRyXj
xv17ABEBAAGJAh8EGAECAAkFAlfPKmcCGwwACgkQFKwy0jX7jrwOPw//XeJ64XoWVY9NAxLP
PwXhKdZGfB8WxIs0pyF2KOAqbXisbp9Cu9OYgm42/idzobyHq1ebkQrW/hKs0248oX+dz83J
TbkllHf+5SBPJCYm5jBnWRz+knaLZwFGkjtdy7NIkArfK9u5ytzKAhWqsi06B90e3MWSWo+X
aLIGIiKZBDGbj2OCDDQyY1Sxh2r6i7Wx4ViI64GoZ0Te8gGM7r2swXYn95vSKISRDaffrczD
83qwdenp84pPFarSMtCTaNzmwwc7MzUXAEnehlfcxs6aPp3I+H4G9JrWB6jUs8pGqqe2qyvo
85K2ffTLUsmoA1+Z7tPqK8nmFe9TPUuAQiZRJuV8X0Ur4l01QwBdmFKqp9yvARoIqIEVbIxM
xofwaRkDLeewWcVa5/tVTdeovI0zAyIfiFgNes1Zi3JK1Z13cGhjHZun2EWY3dufEdzkmGxY
1D09/QyHyLi2NcDavMEblJjg95NWVwQMkTzkAngd/1bJXXzwC82wtrmTYPnDHOaLqO9WbV6L
OuCHg+ZKaLuG3fRYO+n6dYXqdoAnnYrgxhxLPFWW8knso+mz5HEc+N1ND27xzBCimQQEEjlA
YgQslkRvzsczaG7feItsnz1vWAUQvwtr22iJtaYxG1+QhKDINkJkJ9LluK7nMC3SYvZBkh4n
HBu2dHUJXU7b845lvTo=
=JVgV
-----END PGP PUBLIC KEY BLOCK-----

Other bugs

The best way to report an issue and to ensure a timely response is to use the
issue tracker.

	Create a GitHub account.

You need to create a GitHub account [https://github.com/signup/free] to be able to create new issues
and participate in the discussion.

	Determine if your bug is really a bug.

You should not file a bug if you are requesting support.

	Make sure your bug hasn’t already been reported.

Search through the appropriate Issue tracker. If a bug like yours was found,
check if you have new information that could be reported to help
the developers fix the bug.

	Check if you’re using the latest version.

A bug could be fixed by some other improvements and fixes - it might not have
an existing report in the bug tracker. Make sure you’re using the latest
release of Deux, and try the development version to see if the issue is
already fixed and pending release.

	Collect information about the bug.

To have the best chance of having a bug fixed, we need to be able to easily
reproduce the conditions that caused it. Most of the time this information
will be from a Python traceback message, though some bugs might be in design,
spelling or other errors on the website/docs/code.

	If the error is from a Python traceback, include it in the bug report.

	We also need to know what platform you’re running (Windows, macOS,
Linux, etc.), the version of your Python interpreter, and the version of
Deux, and related packages that you were running when the bug occurred.

	Submit the bug.

By default GitHub [https://github.com] will email you to let you know when new comments have
been made on your bug. In the event you’ve turned this feature off, you
should check back on occasion to ensure you don’t miss any questions a
developer trying to fix the bug might ask.

Issue Tracker

The Deux issue tracker can be found at GitHub:
https://github.com/robinhood/deux

Versions

Version numbers consists of a major version, minor version and a release
number, and conforms to the SemVer versioning spec: http://semver.org.

Stable releases are published at PyPI
while development releases are only available in the GitHub git repository as
tags. All version tags starts with “v”, so version 0.8.0 is the tag v0.8.0.

Branches

Current active version branches:

	master (https://github.com/robinhood/deux/tree/master)

You can see the state of any branch by looking at the Changelog:

https://github.com/robinhood/deux/blob/master/Changelog

If the branch is in active development the topmost version info should
contain meta-data like:

2.4.0
======
:release-date: TBA
:status: DEVELOPMENT
:branch: master

The status field can be one of:

	PLANNING

The branch is currently experimental and in the planning stage.

	DEVELOPMENT

The branch is in active development, but the test suite should
be passing and the product should be working and possible for users to test.

	FROZEN

The branch is frozen, and no more features will be accepted.
When a branch is frozen the focus is on testing the version as much
as possible before it is released.

master branch

The master branch is where development of the next version happens.

Maintenance branches

Maintenance branches are named after the version, e.g. the maintenance branch
for the 2.2.x series is named 2.2. Previously these were named
releaseXX-maint.

The versions we currently maintain is:

	1.0

This is the current series.

Archived branches

Archived branches are kept for preserving history only,
and theoretically someone could provide patches for these if they depend
on a series that is no longer officially supported.

An archived version is named X.Y-archived.

Deux does not currently have any archived branches.

Feature branches

Major new features are worked on in dedicated branches.
There is no strict naming requirement for these branches.

Feature branches are removed once they have been merged into a release branch.

Tags

Tags are used exclusively for tagging releases. A release tag is
named with the format vX.Y.Z, e.g. v2.3.1.
Experimental releases contain an additional identifier vX.Y.Z-id, e.g.
v3.0.0-rc1. Experimental tags may be removed after the official release.

Working on Features & Patches

Note

Contributing to Deux should be as simple as possible,
so none of these steps should be considered mandatory.

You can even send in patches by email if that is your preferred
work method. We won’t like you any less, any contribution you make
is always appreciated!

However following these steps may make maintainers life easier,
and may mean that your changes will be accepted sooner.

Forking and setting up the repository

First you need to fork the Deux repository, a good introduction to this
is in the GitHub Guide: Fork a Repo [http://help.github.com/fork-a-repo/].

After you have cloned the repository you should checkout your copy
to a directory on your machine:

$ git clone git@github.com:username/deux.git

When the repository is cloned enter the directory to set up easy access
to upstream changes:

$ cd deux
$ git remote add upstream git://github.com/robinhood/deux.git
$ git fetch upstream

If you need to pull in new changes from upstream you should
always use the --rebase option to git pull:

git pull --rebase upstream master

With this option you don’t clutter the history with merging
commit notes. See Rebasing merge commits in git [http://notes.envato.com/developers/rebasing-merge-commits-in-git/].
If you want to learn more about rebasing see the Rebase [http://help.github.com/rebase/]
section in the GitHub guides.

If you need to work on a different branch than master you can
fetch and checkout a remote branch like this:

git checkout --track -b 3.0-devel origin/3.0-devel

Running the unit test suite

To run the Deux test suite you need to install a few dependencies.
A complete list of the dependencies needed are located in
requirements/test.txt.

If you’re working on the development version, then you need to
install the development requirements first:

$ pip install -U -r requirements/dev.txt

Both the stable and the development version have testing related
dependencies, so install these next:

$ pip install -U -r requirements/test.txt
$ pip install -U -r requirements/default.txt

After installing the dependencies required, you can now execute
the test suite by calling:

$ python setup.py test

This will run all of the test.

Creating pull requests

When your feature/bugfix is complete you may want to submit
a pull requests so that it can be reviewed by the maintainers.

Creating pull requests is easy, and also let you track the progress
of your contribution. Read the Pull Requests [http://help.github.com/send-pull-requests/] section in the GitHub
Guide to learn how this is done.

You can also attach pull requests to existing issues by following
the steps outlined here: http://bit.ly/koJoso

Calculating test coverage

To calculate test coverage you must first install the coverage [https://pypi.python.org/pypi/coverage/] module.

Installing the coverage [https://pypi.python.org/pypi/coverage/] module:

$ pip install -U coverage

Code coverage in HTML:

$ make cov

The coverage output will then be located at
cover/index.html.

Running the tests on all supported Python versions

There is a tox [https://pypi.python.org/pypi/tox/] configuration file in the top directory of the
distribution.

To run the tests for all supported Python versions simply execute:

$ tox

Use the tox -e option if you only want to test specific Python versions:

$ tox -e 2.7

Building the documentation

To build the documentation you need to install the dependencies
listed in requirements/docs.txt:

$ pip install -U -r requirements/docs.txt

After these dependencies are installed you should be able to
build the docs by running:

$ cd docs
$ rm -rf _build
$ make html

Make sure there are no errors or warnings in the build output.
After building succeeds the documentation is available at _build/html.

Verifying your contribution

To use these tools you need to install a few dependencies. These dependencies
can be found in requirements/pkgutils.txt.

Installing the dependencies:

$ pip install -U -r requirements/pkgutils.txt

pyflakes & PEP8

To ensure that your changes conform to PEP8 and to run pyflakes
execute:

$ make flakecheck

To not return a negative exit code when this command fails use
the flakes target instead:

$ make flakes

API reference

To make sure that all modules have a corresponding section in the API
reference please execute:

$ make apicheck
$ make configcheck

If files are missing you can add them by copying an existing reference file.

If the module is internal it should be part of the internal reference
located in docs/internals/reference/. If the module is public
it should be located in docs/reference/.

For example if reference is missing for the module deux.awesome
and this module is considered part of the public API, use the following steps:

Use an existing file as a template:

$ cd docs/reference/
$ cp deux.request.rst deux.awesome.rst

Edit the file using your favorite editor:

$ vim deux.awesome.rst

 # change every occurrence of ``deux.request`` to
 # ``deux.awesome``

Edit the index using your favorite editor:

$ vim index.rst

 # Add ``deux.awesome`` to the index.

Commit your changes:

Add the file to git
$ git add deux.awesome.rst
$ git add index.rst
$ git commit deux.awesome.rst index.rst \
 -m "Adds reference for deux.awesome"

Coding Style

You should probably be able to pick up the coding style
from surrounding code, but it is a good idea to be aware of the
following conventions.

	All Python code must follow the PEP-8 [http://www.python.org/dev/peps/pep-0008/] guidelines.

pep8.py [http://pypi.python.org/pypi/pep8] is an utility you can use to verify that your code
is following the conventions.

	Docstrings must follow the PEP-257 [http://www.python.org/dev/peps/pep-0257/] conventions, and use the following
style.

Do this:

def method(self, arg):
 """Short description.

 More details.

 """

or:

def method(self, arg):
 """Short description."""

but not this:

def method(self, arg):
 """
 Short description.
 """

	Lines should not exceed 78 columns.

You can enforce this in vim by setting the textwidth option:

set textwidth=78

If adhering to this limit makes the code less readable, you have one more
character to go on, which means 78 is a soft limit, and 79 is the hard
limit :)

	Import order

	Python standard library (import xxx)

	Python standard library (‘from xxx import`)

	Third-party packages.

	Other modules from the current package.

or in case of code using Django:

	Python standard library (import xxx)

	Python standard library (‘from xxx import`)

	Third-party packages.

	Django packages.

	Other modules from the current package.

Within these sections the imports should be sorted by module name.

Example:

import threading
import time

from collections import deque
from Queue import Queue, Empty

from .datastructures import TokenBucket
from .five import zip_longest, items, range
from .utils import timeutils

	Wild-card imports must not be used (from xxx import *).

	For distributions where Python 2.5 is the oldest support version
additional rules apply:

	Absolute imports must be enabled at the top of every module:

from __future__ import absolute_import

	If the module uses the with [https://docs.python.org/dev/reference/compound_stmts.html#with] statement and must be compatible
with Python 2.5 (deux is not) then it must also enable that:

from __future__ import with_statement

	Every future import must be on its own line, as older Python 2.5
releases did not support importing multiple features on the
same future import line:

Good
from __future__ import absolute_import
from __future__ import with_statement

Bad
from __future__ import absolute_import, with_statement

(Note that this rule does not apply if the package does not include
support for Python 2.5)

	Note that we use “new-style` relative imports when the distribution
does not support Python versions below 2.5

This requires Python 2.5 or later:

from . import submodule

Contributing features requiring additional libraries

Some features like a new result backend may require additional libraries
that the user must install.

We use setuptools extra_requires for this, and all new optional features
that require third-party libraries must be added.

	Add a new requirements file in requirements/extras

E.g. for a Cassandra backend this would be
requirements/extras/cassandra.txt, and the file looks like this:

pycassa

These are pip requirement files so you can have version specifiers and
multiple packages are separated by newline. A more complex example could
be:

pycassa 2.0 breaks Foo
pycassa>=1.0,<2.0
thrift

	Modify setup.py

After the requirements file is added you need to add it as an option
to setup.py in the extras_require section:

extra['extras_require'] = {
 # ...
 'cassandra': extras('cassandra.txt'),
}

	Document the new feature in docs/includes/installation.txt

You must add your feature to the list in the Bundles section
of docs/includes/installation.txt.

After you’ve made changes to this file you need to render
the distro README file:

$ pip install -U requirements/pkgutils.txt
$ make readme

That’s all that needs to be done, but remember that if your feature
adds additional configuration options then these needs to be documented
in docs/configuration.rst.

Contacts

This is a list of people that can be contacted for questions
regarding the official git repositories, PyPI packages
Read the Docs pages.

If the issue is not an emergency then it is better
to report an issue.

Committers

Abhishek Fatehpuria

	github:	https://github.com/abhishek776

Jamshed Vesuna

	github:	https://github.com/JamshedVesuna

Packages

Deux

	git:	https://github.com/robinhood/deux

	CI:	http://travis-ci.org/#!/robinhood/deux

	Windows-CI:	https://ci.appveyor.com/project/robinhood/deux

	PyPI:	http://pypi.python.org/pypi/deux

	docs:	http://deux.readthedocs.io

Release Procedure

Updating the version number

The version number must be updated two places:

	deux/__init__.py

	docs/include/introduction.txt

After you have changed these files you must render
the README files. There is a script to convert Sphinx syntax
to generic reStructured Text syntax, and the make target readme
does this for you:

$ make readme

Now commit the changes:

$ git commit -a -m "Bumps version to X.Y.Z"

and make a new version tag:

$ git tag vX.Y.Z
$ git push --tags

Releasing

Commands to make a new public stable release:

$ make distcheck # checks pep8, autodoc index, runs tests and more
$ make dist # NOTE: Runs git clean -xdf and removes files not in the repo.
$ python setup.py sdist upload --sign --identity='Ask Solem'
$ python setup.py bdist_wheel upload --sign --identity='Ask Solem'

If this is a new release series then you also need to do the
following:

	
	Go to the Read The Docs management interface at:

	http://readthedocs.org/projects/deux

	Enter “Edit project”

Change default branch to the branch of this series, e.g. 2.4
for series 2.4.

	Also add the previous version under the “versions” tab.

Changelog

1.2.0

	release-date:	2016-10-28 06:00 P.M PDT

	release-by:	Abhishek Fatehpuria

	[oauth2] Support url-encoded requests for oauth

1.1.1

	release-date:	2016-09-13 06:00 P.M PDT

	release-by:	Abhishek Fatehpuria

	[bugfix] Remove duplicate strings in Deux strings.py

1.1.0

	release-date:	2016-09-13 06:00 P.M PDT

	release-by:	Abhishek Fatehpuria

	Added pytest

	Added codecov

	Changed settings name from “Deux” to “DEUX”

1.0.0

	release-date:	2016-09-07 03:00 P.M PDT

	release-by:	Abhishek Fatehpuria

	Initial release

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 deux	

 	
 	
 deux.abstract_models	

 	
 	
 deux.authtoken	

 	
 	
 deux.authtoken.serializers	

 	
 	
 deux.authtoken.views	

 	
 	
 deux.constants	

 	
 	
 deux.exceptions	

 	
 	
 deux.models	

 	
 	
 deux.notifications	

 	
 	
 deux.oauth2	

 	
 	
 deux.oauth2.backends	

 	
 	
 deux.oauth2.exceptions	

 	
 	
 deux.oauth2.validators	

 	
 	
 deux.oauth2.views	

 	
 	
 deux.serializers	

 	
 	
 deux.services	

 	
 	
 deux.strings	

 	
 	
 deux.validators	

 	
 	
 deux.views	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	_BaseChallengeRequestSerializer (class in deux.serializers)

 	_BaseChallengeVerifySerializer (class in deux.serializers)

 	
 	_BaseChallengeView (class in deux.views)

 	_get_extra_credentials() (deux.oauth2.backends.MFARequestBackend method)

A

 	
 	AbstractMultiFactorAuth (class in deux.abstract_models)

B

 	
 	backup_code (deux.abstract_models.AbstractMultiFactorAuth attribute)

 	(deux.authtoken.serializers.MFAAuthTokenSerializer attribute)

 	(deux.serializers.BackupCodeSerializer attribute)

 	
 	backup_key (deux.abstract_models.AbstractMultiFactorAuth attribute)

 	BackupCodeDetail (class in deux.views)

 	BackupCodeSerializer (class in deux.serializers)

 	BOTH_CODES_ERROR (in module deux.strings)

C

 	
 	CHALLENGE_CHOICES (deux.abstract_models.AbstractMultiFactorAuth attribute)

 	challenge_type (deux.abstract_models.AbstractMultiFactorAuth attribute)

 	(deux.serializers.SMSChallengeRequestSerializer attribute)

 	(deux.serializers.SMSChallengeVerifySerializer attribute)

 	(deux.serializers._BaseChallengeRequestSerializer attribute)

 	(deux.serializers._BaseChallengeVerifySerializer attribute)

 	(deux.views._BaseChallengeView attribute)

 	
 	CHALLENGE_TYPES (in module deux.constants)

 	ChallengeRequiredMessage

 	check_and_use_backup_code() (deux.abstract_models.AbstractMultiFactorAuth method)

 	create_token_response() (deux.oauth2.backends.MFARequestBackend method)

D

 	
 	deux (module)

 	deux.abstract_models (module)

 	deux.authtoken (module)

 	deux.authtoken.serializers (module)

 	deux.authtoken.views (module)

 	deux.constants (module)

 	deux.exceptions (module)

 	deux.models (module)

 	deux.notifications (module)

 	deux.oauth2 (module)

 	deux.oauth2.backends (module)

 	
 	deux.oauth2.exceptions (module)

 	deux.oauth2.validators (module)

 	deux.oauth2.views (module)

 	deux.serializers (module)

 	deux.services (module)

 	deux.strings (module)

 	deux.validators (module)

 	deux.views (module)

 	disable() (deux.abstract_models.AbstractMultiFactorAuth method)

 	DISABLED (in module deux.constants)

 	DISABLED_ERROR (in module deux.strings)

E

 	
 	enable() (deux.abstract_models.AbstractMultiFactorAuth method)

 	enabled (deux.abstract_models.AbstractMultiFactorAuth attribute)

 	
 	ENABLED_ERROR (in module deux.strings)

 	execute_challenge() (deux.serializers._BaseChallengeRequestSerializer method)

 	extract_body() (deux.oauth2.backends.MFARequestBackend method)

F

 	
 	FailedChallengeError

G

 	
 	generate_challenge() (deux.services.MultiFactorChallenge method)

 	generate_key() (in module deux.services)

 	generate_mfa_code() (in module deux.services)

 	
 	get_backup_code() (deux.serializers.BackupCodeSerializer method)

 	get_bin_key() (deux.abstract_models.AbstractMultiFactorAuth method)

 	get_object() (deux.views.MultiFactorAuthMixin method)

I

 	
 	INVALID_BACKUP_CODE_ERROR (in module deux.strings)

 	INVALID_CREDENTIALS_ERROR (in module deux.strings)

 	INVALID_MFA_CODE_ERROR (in module deux.strings)

 	
 	INVALID_PHONE_NUMBER_ERROR (in module deux.strings)

 	InvalidLoginError

 	InvalidPhoneNumberError

M

 	
 	mfa_code (deux.authtoken.serializers.MFAAuthTokenSerializer attribute)

 	(deux.serializers._BaseChallengeVerifySerializer attribute)

 	MFA_CODE_TEXT_MESSAGE (in module deux.strings)

 	MFAAuthTokenSerializer (class in deux.authtoken.serializers)

 	MFAOAuth2Validator (class in deux.oauth2.validators)

 	MFARequestBackend (class in deux.oauth2.backends)

 	
 	MFATokenView (class in deux.oauth2.views)

 	MultiFactorAuth (class in deux.models)

 	MultiFactorAuthDetail (class in deux.views)

 	MultiFactorAuthMixin (class in deux.views)

 	MultiFactorAuthSerializer (class in deux.serializers)

 	MultiFactorChallenge (class in deux.services)

N

 	
 	NOT_SMS_DEVICE_CODE (in module deux.notifications)

O

 	
 	oauthlib_backend_class (deux.oauth2.views.MFATokenView attribute)

 	
 	ObtainMFAAuthToken (class in deux.authtoken.views)

P

 	
 	perform_destroy() (deux.views.MultiFactorAuthDetail method)

 	phone_number (deux.abstract_models.AbstractMultiFactorAuth attribute)

 	
 	PHONE_NUMBER_NOT_SET_ERROR (in module deux.strings)

 	phone_number_validator (in module deux.validators)

 	post() (deux.authtoken.views.ObtainMFAAuthToken method)

R

 	
 	refresh_backup_code() (deux.abstract_models.AbstractMultiFactorAuth method)

S

 	
 	send_mfa_code_text_message() (in module deux.notifications)

 	serializer_class (deux.authtoken.views.ObtainMFAAuthToken attribute)

 	(deux.views.BackupCodeDetail attribute)

 	(deux.views.MultiFactorAuthDetail attribute)

 	(deux.views.SMSChallengeRequestDetail attribute)

 	(deux.views.SMSChallengeVerifyDetail attribute)

 	SMS (in module deux.constants)

 	
 	sms_bin_key (deux.abstract_models.AbstractMultiFactorAuth attribute)

 	sms_secret_key (deux.abstract_models.AbstractMultiFactorAuth attribute)

 	SMS_SEND_ERROR (in module deux.strings)

 	SMSChallengeRequestDetail (class in deux.views)

 	SMSChallengeRequestSerializer (class in deux.serializers)

 	SMSChallengeVerifyDetail (class in deux.views)

 	SMSChallengeVerifySerializer (class in deux.serializers)

 	status_code (deux.oauth2.exceptions.ChallengeRequiredMessage attribute)

T

 	
 	to_representation() (deux.serializers.MultiFactorAuthSerializer method)

 	TwilioMessageError

 	
 	twotuples (deux.oauth2.exceptions.ChallengeRequiredMessage attribute)

 	(deux.oauth2.exceptions.InvalidLoginError attribute)

U

 	
 	update() (deux.serializers._BaseChallengeRequestSerializer method)

 	(deux.serializers.SMSChallengeRequestSerializer method)

 	(deux.serializers._BaseChallengeVerifySerializer method)

 	
 	user (deux.abstract_models.AbstractMultiFactorAuth attribute)

V

 	
 	validate() (deux.authtoken.serializers.MFAAuthTokenSerializer method)

 	(deux.serializers._BaseChallengeRequestSerializer method)

 	(deux.serializers._BaseChallengeVerifySerializer method)

 	
 	validate_user() (deux.oauth2.validators.MFAOAuth2Validator method)

 	validator_class (deux.oauth2.views.MFATokenView attribute)

 	verify_mfa_code() (in module deux.services)

 [image: _images/deux_banner.png]

 nav.xhtml

 Table of Contents

 		Contents

 		Copyright

 		Introduction

 		About

 		What is Multifactor Authentication?

 		Quick Start

 		Installation

 		Requirements

 		Installing with pip

 		Downloading and installing from source

 		Using the development version

 		Bug tracker

 		Contributing

 		License

 		User Guide

 		DRF Integration

 		Setup

 		Views

 		Settings

 		Usage

 		Introduction

 		Getting MFA Status

 		Authentication

 		Enabling MFA

 		Disabling MFA

 		Backup Code

 		Extending

 		Notifications

 		Models

 		Authentication Protocols

 		Challenge Methods

 		API Reference

 		deux

 		GET /mfa/

 		DELETE /mfa/

 		PUT /mfa/sms/request/

 		PUT /mfa/sms/verify/

 		GET /mfa/recovery/

 		deux.abstract_models

 		deux.authtoken

 		POST /mfa/authtoken/login/

 		deux.authtoken.serializers

 		deux.authtoken.views

 		deux.constants

 		deux.exceptions

 		deux.models

 		deux.notifications

 		deux.oauth2

 		POST /mfa/oauth2/token/

 		deux.oauth2.backends

 		deux.oauth2.exceptions

 		deux.oauth2.validators

 		deux.oauth2.views

 		deux.serializers

 		deux.services

 		deux.strings

 		deux.validators

 		deux.views

 		Contributing

 		Community Code of Conduct

 		Be considerate.

 		Be respectful.

 		Be collaborative.

 		When you disagree, consult others.

 		When you are unsure, ask for help.

 		Step down considerately.

 		Reporting Bugs

 		Security

 		Other bugs

 		Issue Tracker

 		Versions

 		Branches

 		master branch

 		Maintenance branches

 		Archived branches

 		Feature branches

 		Tags

 		Working on Features & Patches

 		Forking and setting up the repository

 		Running the unit test suite

 		Creating pull requests

 		Building the documentation

 		Verifying your contribution

 		Coding Style

 		Contributing features requiring additional libraries

 		Contacts

 		Committers

 		Packages

 		Deux

 		Release Procedure

 		Updating the version number

 		Releasing

 		Changelog

 		1.2.0

 		1.1.1

 		1.1.0

 		1.0.0

_images/deux_banner_text.png
DEUX

_static/minus.png

_images/state_diagram.png
Not Enabled

PUT Jmfal{method}irequest
(Receive Verification Code)

Pending

Verification

PUT mial{method)iverify
(Submit Verification Code)

DELETE /mfa/
Disable MFA

Enabled

_images/deux_banner.png
9 D E U X

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/logo.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

